Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/envres

Odour annoyance and physical symptoms among residents living near waste treatment centres ${}^{\bigstar}$

Marjaleena Aatamila^{a,*}, Pia K. Verkasalo^a, Maarit J. Korhonen^{a,1}, Anna Liisa Suominen^{a,b}, Maija-Riitta Hirvonen^a, Marja K. Viluksela^c, Aino Nevalainen^a

^a National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland

^b University of Turku, Institute of Dentistry, Lemminkäisenkatu 2, FI-20520 Turku, Finland

^c Finnish Institute of Occupational Health, P.O. Box 310, FI-70101 Kuopio, Finland

ARTICLE INFO

Article history: Received 2 July 2010 Received in revised form 4 November 2010 Accepted 15 November 2010 Available online 4 December 2010

Keywords: Odour annoyance Odour perception Self-reported physical symptoms Resident Waste treatment

ABSTRACT

Waste treatment processes produce odours and biological emissions to the environment, but their health effects are controversial. The aim of our study was to assess odour-associated self-reported physical symptoms among residents living near waste treatment centres. The study was conducted in the surroundings of five large-scale Finnish waste treatment centres with composting plants. In 2006, 1142 randomly selected residents living within 1.5, 3.0 and 5.0 km of these centres were interviewed by telephone. A questionnaire with 102 items asked about respondent's personal characteristics, odour exposure and symptoms during the preceding 12 months. Physical symptoms were analysed by distance to the waste treatment centre and by the respondent's perception and annoyance of waste treatment odour. The residents who were classified as "annoyed of the odour" reported following physical symptoms more than the others did: unusual shortness of breath (OR 1.5, 95% CI 1.0–2.2), eye irritation (1.5, 1.1–2.1), hoarseness/dry throat (1.5, 1.1–2.0), toothache (1.4, 1.0–2.1), unusual tiredness (1.5, 1.1–2.0), forwer/shivering (1.7, 1.1–2.5), joint pain (1.5, 1.1–2.1) and muscular pain (1.5, 1.1–2.0). Moreover, the ORs for almost all other physical symptoms were elevated among the annoyed respondents. Reported odour annoyance near the waste treatment centres showed an association with many physical symptoms among residents living in the neighbouring areas.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Waste treatment processes produce both chemical and biological emissions to the environment and may expose the residents of nearby neighbourhoods to some health problems. Chemical emissions from waste treatment processes are perceived as odour and can be occasional, repeated or continuous and vary strongly by intensity

E-mail addresses: marjaleena.aatamila@thl.fi (M. Aatamila),

pia.verkasalo@thl.fi (P.K. Verkasalo), maarit.korhonen@utu.fi (M.J. Korhonen), liisa.suominen@thl.fi (A.L. Suominen), maija-riitta.hirvonen@thl.fi (M.-R. Hirvonen), marja.viluksela@ttl.fi (M.K. Viluksela), aino.nevalainen@thl.fi (A. Nevalainen).

0013-9351/\$ - see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.envres.2010.11.008

(Suffet et al., 2009). Because these odours arise largely from microbiological degradation processes (Romain et al., 2008; Witherspoon et al., 2004), we assume that they are mostly unpleasant by hedonic tone. The effects of odour emissions from waste treatment processes in residents' health are considered to be controversial (Dalton, 2003; Herr et al., 2003; Witherspoon et al., 2004).

The hedonic tone of odour is said to have a strong influence both on the association between exposure and annoyance and the association between exposure and symptoms (Sucker et al., 2008). More specifically, neutral and unpleasant odours, as compared with pleasant odours, appear to increase the occurrence of symptoms (Sucker et al., 2009). Under extreme exposure conditions odours can be associated with health-related symptoms (Steinheider et al., 1998), but at moderate odour exposure, symptom-reporting is mediated by annovance among residents in areas nearby the source (Luginaah et al., 2002; Steinheider et al., 1998; Sucker et al., 2009). While the frequency of odour observations may be a suitable predictor for annoyance among residents in the case of unpleasant or neutral industrial odours (Both et al., 2004; Steinheider and Winneke, 1993; Sucker et al., 2008), both frequency and intensity have been reported affecting the annoyance of waste odours (Aatamila et al., 2010). However, in the case of industrial odours, the frequency was assessed by trained observers,

^{*} Data acquisition for the selection of the study subjects was approved by the National Data Protection Agency of Finland. The procedure of the telephone survey was accepted by the Ethics Committee of National Public Health Institute (KTL) of Finland and it was executed according to Declaration of Helsinki. All study subjects with an available telephone number were sent an information letter concerning the coming study of residential environment, waste treatment and population health. Subsequently, the trained interviewers telephoned the subjects, inquired about their willingness to participate and scheduled, when appropriate, the time for the interview.

^{*} Corresponding author. Fax: +358 206 106 497.

¹ Present address: University of Turku, Department of Pharmacology, Drug Development and Therapeutics, FI-20014 Turku, Finland.

and in the case of waste odours, frequency and intensity were reported by the residents.

The role of odours in the causation of health effects is unclear. It has been suggested that it is the annoyance (and not the perception) of odour that leads to the symptoms (Cavalini, 1994; Steinheider et al., 1998). Odour characteristics may, in turn, be contributed to the genesis of odour annoyance and thus to symptoms. In addition to odour exposure, also non-olfactory factors such as person related factors, other environmental exposures, social-economic structure of the residential area and momentary situation (e.g. disturbance of leisure activities or sleeping) have been shown to influence the annoyance response (Sucker et al., 2001; van Thriel et al., 2008).

The potential pathophysiological mechanisms of symptoms possibly associated with odour or other air pollutants from waste treatment are insufficiently understood. Symptoms can be induced by exposure to volatile organic compounds or microbial emissions at levels that cause toxicological effects or sensory irritation in the eye, nose or throat (Schiffman, 1998; Schiffman and Williams, 2005). Typically, responses to biological aerosols and volatile compounds from such sources are inflammatory by their nature, as shown in connection with indoor mould growth (Hirvonen et al., 2005; Penttinen et al., 2005) and agricultural occupations (Kirkhorn and Garry, 2000). The nontoxicological mechanisms are supported by an observation that exposure to moderate or intense odours from industrial hog farming operations can affect the secretory immune system of residents (Avery et al., 2004). Another possible pathway is psychosocial reaction to the environmental stress (Luginaah et al., 2002; Shusterman, 1992) or environmental worry (Shusterman et al., 1991).

Previous studies concerning various environmental odours have found associations between exposure to emissions from various odour sources and symptoms among residents. For example, increased reporting of headache, respiratory problems, eye, nose and throat symptoms, nausea, weakness and diarrhoea has been observed in the vicinity of two swine production facilities (Thu et al., 1997; Wing and Wolf, 2000). Nausea, frequent diarrhoea and excessive tiredness have been associated with exposure to annoying odour and microorganisms from a composting site, and nausea and impaired coordination with exposure to annoying odour (Herr et al., 2009). Bronchitis, waking up due to coughing, coughing when getting up or during the day, shortness of breath at rest and after exertion, smarting eyes, excessive tiredness and shivering were associated with exposure to microorganism concentrations of up to $> 10^5$ CFU m⁻³ near composting site (Herr et al., 2003). In the same study, odour annoyance was associated with eye, joint and muscular symptoms, but not with respiratory tract symptoms. Headache, nausea, eye and throat irritation had a positive relationship with both frequency of odour perception and degree of environmental worry among residents near hazardous waste sites (Shusterman et al., 1991).

As part of the development of modern waste treatment policies and practises, more information about the possible associations between waste odours and human health is needed. The aim of this study was to investigate the associations between distance, odour perception and annoyance, and self-reported physical symptoms among residents living near large-scale waste treatment centres with composting plants. This is to our knowledge the first study on this subject that has been carried out in the cold climate.

2. Materials and methods

2.1. Selection of waste treatment centres and study subjects

For this study, we selected the five Finnish waste treatment centres that were both landfilling municipal waste and composting annually at least 5000 tons of biowaste or sewage sludge. These centres were situated near five cities: centre A was located in Espoo, B in Jyväskylä, C in Lahti, D in Oulu and E in Turku. The composting technique for centre D was drum composting and other centres used tunnel composting. Centre A handles the largest amount of waste in Finland, approximately 0.6 million tons/year, which is approximately 3–5 fold the amount of the other centres. All residential buildings situated at the distance zones of < 1.5, 1.5-<3.0 and 3.0-<5.0 km from the borders of each centre, were identified using a geographic information system (ArcGIS9). All households in detached and row houses with at least one permanent resident (native language Finnish, aged 25–64 years) were randomly sampled by centre and zone at the National Population Register Centre. Consequently, again by random sampling, one resident meeting these eligibility criteria was selected from each household. Data acquisition was approved by the National Data Protection Agency. The details on the selection of five waste treatment centres and the study subjects have been described in our previous paper (Aatamila et al., 2010).

2.2. Telephone interviews

Telephone interviews were conducted by the computer-assisted telephone survey unit of the Finnish Institute of Occupational Health during May and June 2006. All study subjects with an available telephone number (N=1496) were sent an information letter concerning the coming study of residential environment, waste treatment and population health. The trained interviewers telephoned the subjects, inquired about their willingness to participate and scheduled, when appropriate, the time for the interview. The total number of completed interviews was 1142 with average duration of 21 min. The overall response rate was 76.3%, varying between 71.6% and 81.2% by the centre. The procedure of the telephone survey was accepted by the Ethics Committee of National Public Health Institute, Finland (KTL) (currently the National Institute for Health and Welfare).

2.3. Questionnaire

Our semi-structured questionnaire consisted of 102 items and was developed primarily based on a previous telephone survey on health among working-aged people ("Work and Health in Finland 2006"), conducted at the Finnish Institute of Occupational Health (Perkiö-Mäkelä et al., 2006). Further questions related to environmental exposures were added based on earlier environmental studies conducted at the Department of Environmental Health. National Institute for Health and Welfare, Finland. Overall, using the questionnaire, we obtained information about the respondent's background, socioeconomic status (SES), life style and housing. Thirty-four questions asked about the respondent's general health status and physical symptoms during the preceding 12 months (e.g. respiratory tract and gastrointestinal symptoms, eye/nose/throat irritation, headache, fever, tiredness, dizziness, joint/muscular pain) and three during the respondent's entire life (allergic rhinitis, eczema, asthma). Furthermore, the respondent's odour sensitivity was defined by asking: "Do strong odours or fragrances trouble you? The response options were: (1) very much, (2) quite a lot, (3) somewhat, (4) not at all". Subsequently, we asked about perception of odour from the waste treatment centre as follows: "Have you noticed any odour from the waste treatment centre in your residential area? (1) no, (2) yes". Odour reporting respondents were further queried "Does the odour annoy you? (1) very much, (2) quite a lot, (3) somewhat, (4) not at all". Responses (1) and (2) were further categorised as "annoyed of the odour" and others as "not annoyed".

2.4. Statistical analyses

Characteristics of the respondents were categorised by distance zone, odour perception and odour annoyance. Analyses were done with SAS 9.1. (SAS Institute Inc., 2004). Odds ratios (OR) and 95% confidence intervals (CI) for self-reported physical symptoms were obtained by distance zone, odour perception and annoyance using logistic regression models. In these models we categorised symptom reporting in two classes: no ("no" and "do not know") and yes. Model 1 was adjusted for sex, age, education, SES and smoking, and model 2 also for odour sensitivity. The adjusting for odour sensitivity was based on testing the correlation between odour sensitivity and odour annoyance (Spearman correlation coefficient 0.2), which showed that those questions were not measuring the similar trait. We also considered the possibility that odour sensitivity is a modifier for odour annoyance. Therefore, we performed stratified analysis by odour sensitivity. The original four classes of odour sensitivity were, for this analysis, further categorised in two classes: "sensitive" ("very much" or "quite a lot") and "not sensitive" ("somewhat" or "not at all").

3. Results

Table 1 shows the characteristics of the respondents by distance from the waste treatment centre, by odour perception and by odour

Characteristics of respondents living near five waste treatment centres by distance, odour perception and odour annoyance in Finland, 2006.

Characteristic	All		Distance zone						Odour perception (N=1126)				Odour annoyance				
			(N=1142)					(N=1126)									
			3.0–5.0 km		1.5–3.	0 km	< 1.5 km		No		Yes		No		Yes		
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	
Sex																	
Male	570	50	107	49	127	50	336	50	195	47	371	52	453	51	113	48	
Female	572	50	110	51	126	50	336	50	217	53	343	48	439	49	121	52	
Age																	
25-34 years	198	17	30	14	46	18	122	18	91	22	104	15	161	18	34	15	
35-44 years	264	23	51	24	52	21	161	24	88	21	172	24	191	21	69	29	
45-54 years	336	29	70	32	77	30	189	28	103	25	229	32	254	28	78	33	
55-64 years	344	30	66	30	78	31	200	30	130	32	209	29	286	32	53	23	
Education																	
Lower secondary or less	181	16	33	15	39	15	109	16	56	14	122	17	148	17	30	13	
Upper secondary	354	31	61	28	81	32	212	32	128	31	220	31	267	30	81	35	
Lower tertiary	276	24	52	24	57	23	167	25	95	23	177	25	216	24	56	24	
Higher tertiary	331	29	71	33	76	30	184	27	133	32	195	27	261	29	67	29	
Conicator and atotica																	
Entropropour	112	10	22	10	26	10	64	10	12	10	60	10	02	10	10	0	
Linner level employee	222	10	22	25	20	10	175	10	42	20	107	10	95 252	10	66	0 20	
Lower-level employee	323	20	55	25	75	20	202	20	122	30	202	20	233	20	78	20	
Manual worker	213	19	31	14	45	18	137	20	65	16	146	20	162	18	49	21	
Student, pensioner and other	162	13	32	15	36	14	94	14	59	14	100	14	136	15	23	10	
Con al-line of																	
Smoking	- 00	F1	111	F 1	105	40	244	F1	220	52	250	40	464	52	100	45	
Never smoker	202	21	111 E0	51 27	125	49	344 177	21	220	23	350	49	404	52 25	100	45	
Smoker	260	20	10	27	61	20	1//	20	105	25	170	27	220	25	55	24	
Sillokei	200	25	40	22	01	24	151	22	07	21	170	24	202	25	55	24	
Odour sensitivity (missing 1)																	
Very much	111	10	19	9	32	13	60	9	32	8	76	11	61	7	47	20	
Quite a lot	242	21	44	20	51	20	147	22	81	20	157	22	170	19	68	29	
Somewhat	481	42	89	41	105	42	287	43	1/1	42	304	43	385	43	90	38	
NOT AT ALL	307	27	65	30	65	20	177	20	128	31	176	25	275	31	29	12	
Biowaste container in kitchen (m	issing 1)																
No	379	33	84	39	108	43	187	28	133	32	239	33	274	31	98	42	
Yes	762	67	132	61	145	57	485	72	278	68	475	67	617	69	136	58	
Moisture damage at home (missi	ng 18)																
No	1085	97	210	98	240	96	635	96	395	97	675	96	852	97	218	95	
Yes	39	3	4	2	11	4	24	4	12	3	26	4	26	3	12	5	
Living in residential area pear																	
Centre A	114	10	30	18	51	20	24	4	22	5	92	13	70	8	44	19	
Centre B	332	29	45	21	47	19	240	36	165	40	163	23	293	33	35	15	
Centre C	146	13	43	20	44	17	59	9	58	14	87	12	126	14	19	8	
Centre D	298	26	45	21	43	17	210	31	75	18	219	31	206	23	88	38	
Centre E	252	22	45	21	68	27	139	21	92	22	153	21	197	22	48	21	
All	1142	100	217	100	253	100	672	100	412	100	714	100	892	100	234	100	

N, total number of respondents; *n*, number of respondents; %, proportion of respondents.

annoyance. 50% of the all respondents were males and 60% were 45–64 years old. The number of respondents varied between 114 and 332 by waste treatment centre. In the innermost zone, we had a smaller proportion of respondents with higher tertiary education and upper-level employees, and a bigger proportion of manual workers than in the outermost zone. The youngest age group reported odour less than others and the oldest age group was less annoyed with the odour. The most sensitive respondents reported odour annoyance more than others and the respondents with a biowaste container in their kitchen reported less odour annoyance. In addition, differences were found for centre by odour perception and by odour annoyance. More specifically, proportions of respondents reported near centre A and lowest near centre B.

The occurrence of physical symptoms was first studied by distance zones and the outermost zone was used as the reference area. We observed elevated, statistically significant ORs for some physical symptoms, such as nose irritation/stuffy nose, hoarseness/ dry throat and fever/shivering in the innermost zone and joint pain in the intermediate zone when adjusted for age, sex, education, SES, smoking and odour sensitivity (Table 2). However, distance zones were not consistently associated with these physical symptoms.

The associations between odour perception or annoyance and physical symptoms are shown in Table 3. The associations between odour perception and physical symptoms were the strongest for hoarseness/dry throat, headache and diarrhoea when adjusted for age, sex, education, SES, smoking and odour sensitivity. The majority of the ORs for physical symptoms were elevated although not statistically significant.

The residents classified as "annoyed of the odour" tended to report physical symptoms more than the residents who were "not annoyed". After adjustment for age, sex, education, SES, smoking and odour sensitivity, the elevated ORs were seen for unusual shortness of breath (OR 1.5, 95% CI 1.0–2.2), eye irritation

Odds ratios (OR) and 95% confidence intervals (CI) for self-reported physical symptoms during preceding 12 months by distance zone (N=1142).

Self-reported physical symptoms	Distance zone											
	3.0- < 5.0 km	1.5–3.0 km	Mode	el 1ª			Model 2 ^b					
	(N=217)	(N=253)	(N=672)	1.5-3	1.5–3.0 km		km	1.5–3.0 km		< 1.5	5 km	
	n	n	n	OR	95% CI	OR	95% CI	OR	95% CI	OR	95% CI	
Maxillary sinusitis/bronchitis/pneumonia	40	39 175	115	0.8	0.5-1.3	0.9	0.6-1.3	0.8	0.5-1.3	0.9	0.6-1.3	
Cough/phlegm	145	175 (1) ^c	466 (1) ^c	1.1	0.8 - 1.7 0.9 - 2.0	1.3	10-19	1.1	0.7 = 1.7 0.9 = 2.0	1.3	10.7 - 1.4 10 - 1.8	
Unusual shortness of breath	23 (1) ^c	39 (1) ^c	100 (1)	1.6	0.9-2.8	1.5	0.9-2.4	1.5	0.8-2.6	1.5	0.9-2.4	
Wheezing	22	38	97 (1) ^c	1.6	0.9-2.8	1.5	0.9-2.4	1.5	0.8-2.6	1.4	0.9-2.4	
Pain/pressing feeling/tightness of the chest	28	42 (1) ^c	107	1.4	0.8-2.3	1.3	0.8-2.0	1.3	0.8-2.2	1.3	0.8-2.0	
Eye irritation	95	122	319	1.3	0.9-1.8	1.2	0.9-1.7	1.2	0.8-1.8	1.2	0.9-1.6	
Non-allergic rhinitis (\geq month)	34	24	104	0.5	0.3-1.0	0.9	0.6-1.4	0.5	0.3-0.9	0.9	0.6-1.4	
Nose irritation/stuffy nose	143	178	500	1.2	0.8-1.8	1.5	1.1-2.1	1.2	0.8-1.8	1.5	1.1-2.1	
Hoarseness/dry throat	102	118	369	1.0	0.7-1.4	1.4	1.0–1.8	0.9	0.6-1.3	1.3	1.0-1.8	
Sore throat	118 (1) ^c	138 (2) ^c	349	1.0	0.7-1.5	0.9	0.6-1.2	1.0	0.7-1.5	0.9	0.6-1.2	
Headache	148	178 (1) ^c	473	1.1	0.8-1.7	1.1	0.8-1.6	1.1	0.7-1.7	1.1	0.8-1.5	
Toothache	38	44 (1) ^c	131	1.0	0.6-1.6	1.1	0.7-1.7	1.0	0.6-1.6	1.1	0.7-1.6	
Unusual tiredness	72 (2) ^c	83 (1) ^c	234 (1) ^c	1.0	0.7-1.5	1.1	0.8-1.5	0.9	0.6-1.4	1.1	0.8–1.5	
Dizziness	49	58 (1) ^c	165	1.0	0.7-1.6	1.1	0.8–1.7	1.0	0.6-1.5	1.1	0.8–1.7	
Fever/shivering	23	38 (1) ^c	112	1.5	0.9–2.7	1.7	1.1–2.8	1.5	0.9–2.6	1.7	1.0-2.8	
Nausea/vomiting	34	48 (1) ^c	132 (1) ^c	1.3	0.8-2.1	1.3	0.8-2.0	1.2	0.7-2.0	1.3	0.8-2.0	
Diarrhoea	60	74 (1) ^c	208	1.1	0.7-1.6	1.2	0.8-1.6	1.1	0.7-1.6	1.1	0.8-1.6	
Joint pain	80	123 (1) ^c	255 (2) ^c	1.7	1.1-2.5	1.1	0.8-1.5	1.6	1.1-2.4	1.0	0.7-1.5	
Muscular pain	96	115 (1) ^c	306	1.1	0.7-1.6	1.1	0.8-1.4	1.1	0.7-1.5	1.0	0.8-1.4	
Asthma (diagnosed by physician) ^d	17	29	67	1.5	0.8-2.8	1.3	0.7-2.2	1.4	0.7-2.6	1.3	0.7-2.2	
Allergic rhinitis ^d	90	101	295	0.9	0.6-1.3	1.1	0.8-1.5	0.9	0.6-1.3	1.0	0.8-1.4	
Itching eczema ^d	56	64	193	1.0	0.6-1.5	1.2	0.8-1.7	1.0	0.6-1.5	1.2	0.8-1.7	

N, total number of respondents; n, number of respondents.

^a Adjusted for age, sex, education, SES and smoking.

^b Adjusted for age, sex, education, SES, smoking and odour sensitivity.

^c Number of missing answers.

^d During lifetime.

(1.5, 1.1–2.1), hoarseness/dry throat (1.5, 1.1–2.0), toothache (1.4, 1.0–2.1), unusual tiredness (1.5, 1.1–2.0), fever/shivering (1.7, 1.1–2.5), joint pain (1.5, 1.1–2.1) and muscular pain (1.5, 1.1–2.0). Almost all other ORs were elevated although they did not reach statistical significance (Table 3). There were only small differences between models 1 and 2 when adjusting for odour sensitivity. In the stratified analyses, the odour sensitive respondents reported elevated ORs for unusual shortness of breath, headache, toothache, unusual tiredness, fever/shivering, diarrhoea, joint pain and muscular pain, and the non-sensitive respondents reported elevated ORs for eye irritation, hoarseness/dry throat, sore throat, unusual tiredness, joint pain, muscular pain and allergic rhinitis by odour annoyance (Table 4). However, no systematic difference between ORs of these two groups was shown.

We found no association between having biowaste container in kitchen (n=762) and reporting physical symptoms. Instead, moisture damage at home (n=39) was associated with some physical symptoms and the highest ORs were observed for asthma (OR 4.2, 95% CI 2.0–8.9), unusual shortness of breath (4.1, 2.0–8.4) and joint pain (3.0, 1.5–6.1). We tested our models adjusting for waste treatment centre, having biowaste container in kitchen and moisture damage at home, which attenuated some of the ORs slightly, but not more than 0.1 units (data not shown).

4. Discussion

Several self-reported physical symptoms were associated with odour annoyance. These included unusual shortness of breath, eye irritation, hoarseness/dry throat, toothache, unusual tiredness, fever/shivering, joint pain and muscular pain. The associations between physical symptoms and odour perception were weak at most. We observed no consistent change in the reporting of physical symptoms by the distance from waste treatment centre. Although odour sensitivity of an individual seems to be associated with physical symptoms, it accounts for only part of the symptoms.

The strengths of this study include the random sampling of respondents and the fairly good response rate (> 70%), which reduce the potential for biased selection of the most annoyed residents and subsequent overestimation of the physical symptoms. In addition, there were only minor differences in the characteristics of respondents across distance zones suggesting that the sampling was unbiased. To reduce reporting bias, no mention on odour was made when introducing the survey to the respondent and the questions about physical symptoms preceded the odour related questions. Assessment of odour was based on retrospective self-reports. Due to the cross-sectional design, however, the reverse causality cannot be ruled out. That is, reported odour perception and especially odour annoyance may be affected by perceived symptoms.

Generally, the symptoms did not show dose–response pattern by vicinity of waste treatment centre. This might be due to considerable differences between the studied waste treatment centres (Aatamila et al., 2010). This means that at least in the case of different waste treatment centres, the vicinity alone is not a sufficient predictor for physical symptoms, and that the personal experience of odour is likely to be a more important exposure measure. This is supported by studies near hazardous waste sites, where many of the symptoms were excessive primary in those who complained of odour (Neutra et al., 1991). In general, however, to

Odds ratios (OR) and 95% confidence intervals (CI) for self-reported physical symptoms during preceding 12 months by odour perception and annoyance (N=1126).

Self-reported physical symptoms	ed physical symptoms Odour perception						Odour annoyance						
	No (N=412)	Yes (N=714) Model 1 ^a		el 1ª	Model 2 ^b		No (<i>N</i> =892)	Yes (N=234)	Model 1 ^a		Model 2 ^b		
	п	n	OR	95% CI	OR	95% CI	n	n	OR	95% CI	OR	95% CI	
Maxillary sinusitis/bronchitis/pneumonia Respiratory infection Cough/phlegm Unusual shortness of breath Wheezing Pain/pressing feeling/tightness of the chest	71 278 275 57 48 59	117 487 488 (2) ^c 101 (1) ^c 108 (1) ^c 115 (1) ^c	1.0 1.1 1.1 1.0 1.3 1.1	0.7-1.3 0.8-1.4 0.8-1.4 0.7-1.5 0.9-1.9 0.8-1.6	0.9 1.1 1.1 0.9 1.2 1.1	0.7-1.3 0.8-1.4 0.8-1.4 0.7-1.4 0.8-1.7 0.8-1.6	142 593 598 (1) ^c 108 112 (1) ^c 128	46 172 165 (1) ^c 50 (1) ^c 44 46 (1) ^c	1.2 1.3 1.1 2.0 1.5 1.4	0.8-1.8 0.9-1.8 0.8-1.5 1.3-2.9 1.0-2.3 1.0-2.1	1.1 1.2 1.1 1.5 1.1 1.2	0.7-1.6 0.9-1.7 0.8-1.5 1.0-2.2 0.7-1.7 0.8-1.9	
Eye irritation Non-allergic rhinitis (≥ month) Nose irritation/stuffy nose Hoarseness/dry throat Sore throat	190 58 285 196 220	339 102 521 383 375 (2) ^c	1.1 1.1 1.3 1.4 1.0	0.9-1.4 0.8-1.6 1.0-1.7 1.1-1.7 0.8-1.4	1.0 1.1 1.2 1.3 1.0	0.8-1.3 0.8-1.6 0.9-1.6 1.0-1.7 0.8-1.3	394 130 624 432 454	135 30 182 147 141 (2) ^c	1.8 0.9 1.5 1.8 1.4	1.3-2.4 0.6-1.4 1.1-2.1 1.3-2.4 1.0-1.9	 1.5 0.9 1.3 1.5 1.3 	1.1–2.1 0.6–1.4 0.9–1.9 1.1–2.0 0.9–1.8	
Headache Toothache Unusual tiredness Dizziness Fever/shivering Nausea/vomiting Diarrhoea Joint pain Muscular pain	275 72 142 (1) ^c 89 51 75 (1) ^c 110 157 172	$509 (1)^{c} \\ 134 (1)^{c} \\ 240 (1)^{c} \\ 177 (1)^{c} \\ 120 (1)^{c} \\ 133 (1)^{c} \\ 228 (1)^{c} \\ 293 (3)^{c} \\ 337 (1)^{c} \\ \end{cases}$	 1.4 1.1 1.0 1.2 1.4 1.1 1.3 1.1 1.2 	$\begin{array}{c} 1.1-1.9\\ 0.8-1.6\\ 0.7-1.3\\ 0.9-1.7\\ 1.0-2.0\\ 0.8-1.6\\ 1.0-1.7\\ 0.8-1.4\\ 0.9-1.5\end{array}$	1.4 1.1 0.9 1.1 1.3 1.1 1.3 1.0 1.2	$\begin{array}{c} 1.0{-}1.8\\ 0.8{-}1.5\\ 0.7{-}1.2\\ 0.8{-}1.6\\ 0.9{-}1.9\\ 0.8{-}1.6\\ 1.0{-}1.7\\ 0.8{-}1.4\\ 0.9{-}1.5\\ \end{array}$	607 151 278 (1) ^c 196 120 164 (1) ^c 257 337 (2) ^c 380	$\begin{array}{c} 177\ (1)^{c} \\ 55\ (1)^{c} \\ 104\ (1)^{c} \\ 70\ (1)^{c} \\ 51\ (1)^{c} \\ 44\ (1)^{c} \\ 81\ (1)^{c} \\ 113\ (1)^{c} \\ 129\ (1)^{c} \end{array}$	1.3 1.5 1.8 1.6 1.9 1.0 1.3 1.7 1.6	0.9-1.9 1.0-2.2 1.3-2.4 1.1-2.2 1.3-2.8 0.7-1.5 0.9-1.7 1.2-2.2 1.2-2.2	1.2 1.4 1.5 1.3 1.7 0.9 1.2 1.5 1.5	$\begin{array}{c} 0.8 - 1.7 \\ 1.0 - 2.1 \\ 1.1 - 2.0 \\ 0.9 - 1.8 \\ 1.1 - 2.5 \\ 0.6 - 1.4 \\ 0.9 - 1.7 \\ 1.1 - 2.1 \\ 1.1 - 2.0 \end{array}$	
Asthma (diagnosed by physician) ^d Allergic rhinitis ^d Itching eczema ^d	41 168 109	71 309 196	1.0 1.2 1.1	0.7–1.5 0.9–1.5 0.8–1.5	0.9 1.1 1.1	0.6–1.4 0.9–1.4 0.8–1.5	87 363 234	25 114 71	1.1 1.3 1.2	0.7–1.8 1.0–1.8 0.9-1.6	0.8 1.1 1.1	0.5–1.3 0.8–1.5 0.8–1.5	

N, total number of respondents; *n*, number of respondents

^a Adjusted for age, sex, education, SES and smoking.

^b Adjusted for age, sex, education, SES, smoking and odour sensitivity.

^c Number of missing answers.

^d During lifetime.

improve the exposure assessment (e.g. odour dispersion modelling, or grid measurements with trained observers), it might be important to consider the effects of some other environmental factors, such as noise, dust, living conditions, wind direction, roads, electric power lines or forests. More information about the types and magnitudes of emissions, for example on treatment capacities, treatment processes and environmental controls would be important to provide.

In addition, our results for the higher occurrence of the symptoms of eye and throat are, in the context of odour annoyance, supported by a previous study near hazardous waste sites where frequent odour was associated with irritation or soreness of eye and throat (Shusterman et al., 1991). One explanation for the throat symptoms might be that avoiding unpleasant odours often leads into breathing through mouth rather than nose (Dalton, 2003). Similar eye and throat symptoms are also associated with emissions from other types of organic sources. Eye symptoms have been observed near large-scale swine production facilities (Thu et al., 1997; Wing and Wolf, 2000) and in association with odour annoyance near composting sites (Herr et al., 2003). In our study unusual tiredness was associated with annoying odour whereas in a previous study of composting sites, excessive tiredness was connected with exposure to elevated microorganism concentrations and annoying odour from a composting site, but not with exposure to annoying odour solely (Herr et al., 2009, 2003). We observed associations between unusual shortness of breath, fever/ shivering and odour annoyance. Shivering and shortness of breath at rest and after exertion have been previously associated with elevated microorganism levels near a composting site (Herr et al., 2003). Our results for the connections between odour annoyance and joint and muscular pain are supported by the above-mentioned

study, which found joint troubles and muscular symptoms in residents with odour annoyance in a residential area near composting site (Herr et al., 2003). The symptom profile in our study resembles those observed in association with building dampness and mould (WHO, 2009) and occupational exposure of waste treatment (Bunger et al., 2000; Gelberg, 1997; Ivens et al., 1999; Krajewski et al., 2004).

As for occupationally exposed subjects, similar physical symptoms as in our study have been observed among waste workers: diseases of the airways and skin among compost workers (Bunger et al., 2000), and dermatologic, neurologic and respiratory symptoms and sore throat symptom among employees working at landfill (Gelberg, 1997). Furthermore, joint and muscle pain was reported by 43% of the workers at a large sewage treatment plant (Krajewski et al., 2004). Moreover, a linear exposure-response relationship between microbial exposure and nausea as well as diarrhoea has been shown among workers in the waste collection industry (Ivens et al., 1999). It should be noted, however, that the exposure levels to both microbial particles and odorous chemicals are orders of magnitude higher in the occupational settings (Ivens et al., 1999; Poulsen et al., 1995) than in the nearby residential areas (Herr et al., 2003; Kaarakainen et al., 2008). Although the source of exposure is the same for both the workers and the residents, different levels of exposure as a consequence of distance suggest that the mechanisms are not necessarily the same. Another difference is that there are probably not many highly sensitive individuals working at landfill because they either cannot work at all or leave work quickly due to acute reactions to occupational exposures. Consequently, in occupational settings higher exposure levels overestimate the occurrence of physical symptoms whereas the absence of most sensitive individuals does the opposite.

Odds ratios (OR) and 95% confidence intervals (CI) for self-reported physical symptoms during preceding 12 months by odour annoyance stratified by respondents odour sensitivity.

Self-reported physical symptoms	Odour sensitive	e respondents			Non-sensitive respondents						
	Odour annoyand	ce			Odour annoyance						
	No (N=231)	Yes (N=115)	Model	1 ^a	No (<i>N</i> =660)	Yes (N=119)	Model 1 ^a				
	n	n	OR 95% CI		n	n	OR	95% CI			
Maxillary sinusitis/bronchitis/pneumonia Respiratory infection Cough/phlegm Unusual shortness of breath	39 154 163 47	29 84 78 34	1.6 1.2 0.8 1.7	0.9–2.8 0.7–2.1 0.5–1.3 1.0–2.8	103 439 435(1) ^b 61	17 88 87(1) ^b 16(1) ^b	0.8 1.3 1.4 1.6	0.5–1.4 0.8–2.1 0.9–2.3 0.8–2.9			
Wheezing Pain/pressing feeling/tightness of the chest	45 42	31 29	1.4 1.5	0.8–2.4 0.9–2.6	67(1) ^b 86	13 17(1) ^b	1.1 1.1	0.6–2.1 0.6–1.9			
Eye irritation Non-allergic rhinitis (≥month) Nose irritation/stuffy nose Hoarseness/dry throat Sore throat	138 33 179 140 126	71 13 94 77 69(1) ^b	1.2 0.8 1.3 1.3 1.2	0.7-1.9 0.4-1.6 0.7-2.4 0.8-2.1 0.7-1.9	255 97 444 291 328	64 17 88 70 72(1) ^b	 1.9 1.4 1.8 1.5 	1.3–2.9 0.6–1.8 0.9–2.2 1.2–2.7 1.0–2.2			
Headache Toothache Unusual tiredness Dizziness Fever/shivering Nausea/vomiting Diarrhoea Joint pain Muscular pain	167 38 98 81 41 54(1)b 59 102(1)b 108	94 29 62 42 32 24 44 60 66	 2.0 1.7 1.7 1.2 1.8 0.9 1.7 1.6 1.5 	$\begin{array}{c} 1.1-3.6\\ 1.0-3.0\\ 1.1-2.7\\ 0.7-1.9\\ 1.0-3.2\\ 0.5-1.5\\ 1.1-2.9\\ 1.0-2.6\\ 1.0-2.5\end{array}$	439 112 180(1) ^b 114 78 110 198 234(1) ^b 272	$\begin{array}{c} 83(1)^{\rm b} \\ 26(1)^{\rm b} \\ 42(1)^{\rm b} \\ 28(1)^{\rm b} \\ 19(1)^{\rm b} \\ 20(1)^{\rm b} \\ 37(1)^{\rm b} \\ 53(1)^{\rm b} \\ 63(1)^{\rm b} \end{array}$	1.0 1.3 1.5 1.5 1.6 1.1 1.0 1.6 1.6	0.6-1.6 0.8-2.1 1.0-2.3 0.9-2.5 0.9-2.7 0.6-1.9 0.7-1.6 1.0-2.4 1.1-2.4			
Asthma (diagnosed by physician) ^c Allergic rhinitis ^c Itching eczema ^c	38 123 71	18 58 42	0.9 0.8 1.3	0.5–1.8 0.5–1.3 0.8–2.1	49 239 163	7 56 29	0.8 1.5 0.9	0.3–1.9 1.0–2.2 0.6–1.4			

N, total number of respondents; *n*, number of respondents

^a Adjusted for age, sex, education, SES and smoking.

^b Number of missing answers.

^c During lifetime.

The physical symptoms represented here resemble the symptom profile observed in residents living in moisture damaged houses (WHO, 2009). We also observed an association between moisture damage at home and physical symptoms, based on 39 exposed subjects. However, including moisture damage in the model did not markedly change the ORs, which means that moisture damage does not explain the results of the present study. Conversely, in a German study mould and dampness in homes were not associated with airway symptoms among residents nearby a composting site (Herr et al., 2003), but also in this case the number of respondents with dampness problems was very small. This does not exclude the possibility that moisture damage might explain the physical symptoms in the case of a single study subject or other person living near waste treatment centre.

According to our previous measurements on microbial emissions (Kaarakainen, unpublished data) background concentrations are reached by the distance of 200 m from the source. In two other studies, the bioaerosol levels were increased at about 500 m of the composting plant (Recer et al., 2001) and near background concentrations within 550 m of the composting plant (Herr et al., 2003). Given that, in our present study, only three residents lived closer than 200 m from the border of the waste treatment centre and all subjects more than 600 m from the composting plant, it is unlikely that the microbial exposure plays an important role in the development of the observed symptoms. Perceiving odour denotes exposure to chemical compounds, but on the other hand, many odorants associated with organic decomposition can be smelled in extremely small concentrations, smaller than concentrations known to be harmful (Dalton, 2003; Rosenkranz and Cunningham, 2003; STM, 2009). Due to these facts and the finding that the associations between odour perception and physical symptoms were weak, it is likely that the concentrations of chemical compounds in residential areas in our study were too small to cause symptoms by immunotoxicological mechanisms or sensory irritation.

Our study showed that the physical symptoms were more clearly associated with odour annoyance than with odour perception. Several other studies have ended up with similar conclusions. Three former studies discovered that in moderate odour conditions, health effects are mediated by annoyance (Luginaah et al., 2002; Steinheider et al., 1998; Sucker et al., 2009). It can be concluded that the physical symptoms are mainly associated with odour annoyance, not with odour perception.

Partially similar symptoms as in our study have also been found in a questionnaire study on patients who attributed their unexplained physical symptoms to environmental factors (Herr et al., 2009). These patients had no indication of a current relevant environmental exposure; still they reported more symptoms than residents with exposure to annoying odours and biological emissions from waste treatment. This emphasises the importance of psychosocial reactions, in parallel with possible pathophysiological mechanisms, when considering associations between environmental exposure and perceived symptoms.

To conclude, reported odour annoyance near waste treatment centres was associated with physical symptoms among residents living in the neighbouring areas. The associations between reported odour annoyance and physical symptoms were consistent although not strong.

Acknowledgments

The study was supported by the Finnish Ministry of Social Affairs and Health, Marjaleena Aatamila was supported by the Juho Vainio Foundation and Pia K. Verkasalo was supported by the Academy of Finland (Grant number 206950). The assistance of the interviewers and the residents who participated in the study is appreciated.

The roles of funding sources

The funding sources had no involvement with the study design, collection, analysis or interpretation of data, writing of the report or with the decision to submit the paper for publication.

References

- Aatamila, M., Verkasalo, P.K., et al., 2010. Odor annoyance near waste treatment centers: a population-based study in Finland. J. Air Waste Manage. Assoc. 60, 412–418.
- Avery, R.C., Wing, S., et al., 2004. Odor from industrial hog farming operations and mucosal immune function in neighbors. Arch. Environ. Health 59, 101–108.
- Both, R., Sucker, K., et al., 2004. Odour intensity and hedonic tone—important parameters to describe odour annoyance to residents? Water Sci. Technol. 50, 83–92.
- Bunger, J., Antlauf-Lammers, M., et al., 2000. Health complaints and immunological markers of exposure to bioaerosols among biowaste collectors and compost workers. Occup. Environ. Med. 57, 458–464.
- Cavalini, P.M., 1994. Industrial odorants—the relationship between modeled exposure concentrations and annoyance. Arch. Environ. Health 49, 344–351.
- Dalton, P., 2003. How people sense, perceive and react to odors. Biocycle 44, 26–29.
 Gelberg, K.H., 1997. Health study of New York City Department of Sanitation landfill employees. J. Occup. Environ. Med. 39, 1103–1110.
- Herr, C.E.W., Nieden, A.Z., et al., 2009. Assessment of somatic complaints in environmental health. Int. J. Hyg. Environ. Health 212, 27–36.
- Herr, C.E.W., zur Nieden, A., et al., 2003. Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study. Occup. Environ. Med. 60, 336–342.
- Hirvonen, M.R., Huttunen, K., et al., 2005. Bacterial strains from moldy buildings are highly potent inducers of inflammatory and cytotoxic effects. Indoor Air 15 (Suppl. 9), 65–70.
- Ivens, U.I., Breum, N.O., et al., 1999. Exposure-response relationship between gastrointestinal problems among waste collectors and bioaerosol exposure. Scand. J. Work Environ. Health 25, 238–245.
- Kaarakainen, P., Meklin, T., et al., 2008. Seasonal variation in airborne microbial concentrations and diversity at landfill, urban and rural sites. Clean-Soil Air Water 36, 556–563.
- Kirkhorn, S.R., Garry, V.F., 2000. Agricultural lung diseases. Environ. Health Perspect. 108 (Suppl. 4), 705–712.
- Krajewski, J.A., Cyprowski, M., et al., 2004. Health complaints from workplace exposure to bioaerosols: a questionnaire study in sewage workers. Ann. Agric. Environ. Med. 11, 199–204.
- Luginaah, I.N., Taylor, S.M., et al., 2002. Community reappraisal of the perceived health effects of a petroleum refinery. Soc. Sci. Med. 55, 47–61.
- Neutra, R., Lipscomb, J., et al., 1991. Hypotheses to explain the higher symptom rates observed around hazardous-waste sites. Environ. Health Perspect. 94, 31–38.

- Penttinen, P., Huttunen, K., et al., 2005. The proportions of Streptomyces californicus and Stachybotrys chartarum in simultaneous exposure affect inflammatory responses in mouse RAW264.7 macrophages. Inhal. Toxicol. 17, 79–85.
- Perkiö-Mäkelä, M., Hirvonen, M., et al., 2006. Work and Health in Finland 2006. Finnish Institute of Occupational Health, Tampere, Finland (in Finnish) < http:// www.ttl.fi/fi/verkkokirjat/tyo_ja_terveys_suomessa/Documents/tyo_ja_terveys_ 2006_taulukkoraportti.pdf >.
- Poulsen, O.M., Breum, N.O., et al., 1995. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes. Sci. Total Environ. 168, 33–56.
- Recer, G.M., Browne, M.L., et al., 2001. Ambient air levels of Aspergillus fumigatus and thermophilic actinomycetes in a residential neighborhood near a yard-waste composting facility. Aerobiologia 17, 99–108.
- Romain, A.C., Delva, J., et al., 2008. Complementary approaches to measure environmental odours emitted by landfill areas. Sens. Actuators B Chem. 131, 18–23.
- Rosenkranz, H.S., Cunningham, A.R., 2003. Environmental odors and health hazards. Sci. Total Environ. 313, 15–24.
- SAS Institute Inc. SAS Online Doc 9.1.3. Cary, NC: SAS Institute Inc., 2004.
- Schiffman, S., 1998. Livestock odors: implications for human health and well-being. J. Anim. Sci. 76, 1343–1355.
- Schiffman, S.S., Williams, C.M., 2005. Science of odor as a potential health issue. J. Environ. Qual. 34, 129–138.
- Shusterman, D., 1992. Critical-review—the health significance of environmental odor pollution. Arch. Environ. Health 47, 76–87.
- Shusterman, D., Lipscomb, J., et al., 1991. Symptom prevalence and odor-worry interaction near hazardous-waste sites. Environ. Health Perspect. 94, 25–30.
- Steinheider, B., Both, R., et al., 1998. Field studies on environmental odors inducing annoyance as well as gastric and general health-related symptoms. J. Psychophysiol. 12, 64–79.
- Steinheider, B., Winneke, G., 1993. Industrial odors as environmental stressors exposure–annoyance associations and their modification by coping, age and perceived health. J. Environ. Psychol. 13, 353–363.
- STM, 2009. Concentrations Known to be Harmful. Finnish Ministry of Social Affairs and Health (in Finnish) http://urn.fi/URN:ISBN:978-952-00-2830-5>.
- Sucker, K., Both, R., et al., 2008. Odor frequency and odor annoyance Part II: doseresponse associations and their modification by hedonic tone. Int. Arch. Occup. Environ. Health 81, 683–694.
- Sucker, K., Both, R., et al., 2001. Adverse effects of environmental odours: reviewing studies on annoyance responses and symptom reporting. Water Sci. Technol. 44, 43–51.
- Sucker, K., Both, K., et al., 2009. Review of adverse health effects of odours in field studies. Water Sci. Technol. 59, 1281–1289.
- Suffet, I.H., Decottignies, V., et al., 2009. Sensory assessment and characterization of odor nuisance emissions during the composting of wastewater biosolids. Water Environ. Res. 81, 670–679.
- Thu, K., Donham, K., et al., 1997. A control study of the physical and mental health of residents living near a large-scale swine operation. J. Agric. Saf. Health 3, 13–26.
- van Thriel, C., Kiesswetter, E., et al., 2008. Odor annoyance of environmental chemicals: sensory and cognitive influences. J. Toxicol. Environ. Health Part a Curr. (71), 776–785.
- WHO, 2009. WHO Guidelines for Indoor Air Quality: Dampness and Mold. World Health Organization.
- Wing, S., Wolf, S., 2000. Intensive livestock operations, health, and quality of life among eastern North Carolina residents. Environ. Health Perspect. 108, 233–238.
- Witherspoon, J.R., Adams, G., et al., 2004. Water Envivonment Research Foundation (WERF) anaerobic digestion and related processes, odour and health effects study. Water Sci. Technol. 50, 9–16.